Open source software: Controlling
your computing environment

Open source software (0SS) - free to use, reuse,
study, modify, and distribute - is quickly being
adopted by libraries today. From office
productivity suites such as OpenOffice to library-
specific applications such as an integrated library
system, “next generation” library catalogs and
Firefox extensions. Open source software has a lot
to offer libraries. This session looks at the many
types of OSS available, how libraries are making
use of it, and how it can be exploited in order to
control your local computing environment.

Myriad of definitions

At its core, open source software is a process for
creating and distributing software, but there are
many nuances to this overly broad definition. For
example, many people associate open source
software with the word “free”. Such an association
itself needs to be qualified because in this case
“free” should equated with liberty, not gratis. A
person is licensed the freedom - atliberty - to
modify open source software in any way they
desire. On the other hand, open source software is
also “as free as a free kitten”, meaning that, while it
is given away, it does not come without financial
costs. There are costs for hardware, personnel, and
training. It is possible to purchase support for open
source software, so there is yet another costs.
There are costs of migrating from one system to
another. There are emotional costs. “I like the way
this system works.” All of these costs are also
associated with “closed” source software, but at
least with open source software you get two
additional things. First, you get to see the entire
package before making a commitment. Second,
open source software is more standards-compliant
than “closed” source software because there are
fewer proprietary features. Consequently, people
who spend time installing, customizing, and
modifying open source software are learning
transferable skills that can be applied more readily
in other venues. In this way, the choice of
implementing open source software is also an
investment in local people instead of remote share
holders.

While the concept of liberty is at the core of open
source software, the process of writing and
distributing open source software are the things

that has really made it sustainable. This process is
often referred to as “scratching an itch”, and it
really would not be possible without the Internet.
Here is how it works. A person has a computing
problem - an itch. They go about writing a
program attempting to solve the problem. The
programmer realizes other people may have
similar problems, and consequently the
programmer shares their code with these other
people. Some of these other people pick up the
software, modify it to suit their own needs, and
(sometimes) share their modifications back with
the original programmer. If the modifications fit
with the overall philosophy of the original
developer, then the enhancements are
incorporated into the original distribution, and the
whole process is begun anew. Rinse. Shampoo.
Repeat.' If the modifications do not fit within
philosophy of the original developer, and the
second developer really wants to distribute their
enhancements, then a “fork” - a new branch - of
the software is created. Again, rinse. Shampoo.
Repeat. Without the Internet, the communications
process necessary for the sharing of code would be
an impediment to success.

Open source software is about community. It is
about people coming together to support a
common interest. (The phrase “a common cause”
may be too strong.) Each community will create its
own working dynamics. Some will vote. Some will
practice meritocracy - governance or the holding
of power by people selected on the basis of their
ability. Some will be ruled by a benevolent dictator.
The book by Eric Raymond called The Cathedral
and the Bazaar described open source software
development as being fueled by the altruistic
hacker interested in praise from their fellow
programmers. The book The Success of Open Source
by Steven Weber sees the open source software
community as a set of problem solvers. While I
used to lean towards the former, I see more and
more the realism of the second.

T There is a joke in computing circles, and it goes
like this. Did you hear about the programmer who
got stuck in the shower? He followed the
instructions on the back of the bottle. Rinse.
Shampoo. Repeat.



0SS and librarianship

There are many aspects of open source software
which are akin to the principles of librarianship.
First and foremost in my mind is the expected use
of the deliverable - none. In the first case, the
deliverable is software. In the second, it is data and
information. In both cases, there are very few
expectations in regard to what a person does with
the information. “You are free to use and modify
the program in any way you desire... It is none of
my business why you want to know the answer to
this particular reference question or borrow that
book.”

Both the open source community and the academic
library community value forms of peer review. In
open source, this is commonly paraphrased as
“Given enough eyeballs, all bugs are shallow.”
Meaning, if many people look at the source code,
then sooner rather than later all the problems with
it will be discovered. This is the root purpose of
peer review as well, except the “many eyeballs” are
traded for a few experts.

To some degree, open source software is about the
common good, but this is increasingly debated.
More often it is seen as a way to avoid vendor lock-
in and have more control over one’s computing
environment. Many people believe libraries are a
public good, but given the increasing numbers of
institutions who provide information services, this
is something I debate with myself.

Open source software is about community. So is
librarianship. It is not possible to create, grow, and
maintain open source software without a high
degree of collegiality and collaboration. I believe I
read someplace that one of the most common
words appearing in library position
announcements is some form of the word
“collaboration”.

Open source software in libraries

As you may or may not know, the Internet just
about runs on open source software. For example,
most of the Web is run using a program called
Apache, an open source HTTP server. The program
used to convert most host names (like
www.library.nd.edu) into IP addresses (like
129.74.250.207) is called named, a venerable
golden oldie when it comes to open source. A

whole lot of your email is delivered from computer
to computer through a program called sendmail,
just about as old as named. All of these applications
run on top of different versions of Linux and a suite
of software called GNU.

In Library Land open source software is
increasingly used. Many of you probably use
Firefox as your Web browser. Many of you
probably write blogs, and the most popular blog
software is WordPress. The root of many “next
generation” library catalogs is an indexing
application called Lucene. Many of our current
integrated library systems implementing Z29.50
use open source software modules from Index
Data called Zebra. Then there are the “next
generation” library catalog applications
themselves: VuFind, Evergreen, Koha, Blacklight,
Scriblio, etc. If you have digital collections and built
the digital collection software yourself, then
dollars to donuts you used a relational database
program called MySQL. Open source software is
just about everywhere when it comes to
computers.

Open source software is not “better” than closed
source software. Nor is closed source software
“better” than open source source software. For the
most part, both types of software get the job done.
For the most part, both types of software have
similar costs - both financial and emotional. The
difference lies in control. Closed source software is
akin to buying a car with the hood welded shut.
You can not open it up to fix it. You have limited
abilities get into its guts and change it
functionality. Granted, most people are not
mechanics, yet only a small number of mechanics
who have seamless ways to communicate are all
that are needed to support a large community of
automobile drivers. In a profession like our own -
one of data and information distributed through
computers - it behooves us to have as much
control over our computing environment as
possible. It behooves us to support and learn how
to exploit open source software.

Eric Lease Morgan
University of Notre Dame

March 28, 2009



