
As a part of a sponsored National
Science Foundation (NSF) grant called
Ockham, the University Libraries of
Notre Dame implemented a set of SRU
modules and scripts written in Perl. This
text describes this process in more detail.

Ockham

Ockham is a sponsored NSF Digital
Library grant with co-PI’s at Emory
University, Virginia Tech, Oregon State
University, and the University of Notre
Dame. The primary purpose of the grant
is/was to explore and implement
programatic methods of better
integrating NSF digital library content
into traditional library settings through
the use of “light-weight” protocols. In
general, light-weight protocols were
characterized as non-proprietary,
modular in design, and Web Services-
based methods for data exchange and
display. We used the name Ockham to
denote our desire to be not overly
complicated. Our example
implementations included, among other
things, a registry of digital library
collections and services, a Find More
Like This One service, and an Alerting
service. For more information about
Ockham see http://ockkham.org/.

Alerting service

Notre Dame was charged with
implementing the Alerting service. This
service, analogous to a current
awareness service, is intended to provide
the means of learning “What’s new?”
from the NSF Digital Library. In a
nutshell, this is how it works:

1. The last thirty days of metadata
content available from the NSF
OAI Repository is harvested and
saved locally.

2. The content is indexed.

3. Searches against the index are
returned as HTML pages, email
messages, or RSS feeds.

4. Everyday content is harvested
from the Repository that is one
day old.

5. Everyday content older than
thirty days is deleted from the
local cache.

6. Go to Step #2.

Through such an algorithm, the user is
expected to articulate one or more
searches against the index and then save
useful queries as RSS feeds in their RSS
news reader. Using this approach the
user should be able to read their news
feeds on a daily basis as view an ever-
changing set of results.

Implementation

With the help of a very able and expert
Perl programmer, the Alerting service
was implemented through a set of object
oriented Perl modules and
accompanying scripts:

 Ockham::Alert supports the
harvesting/caching/indexing
process. Given a set of one or
more OAI URL’s and associated
dates, this module allows the

Implementing SRU in Perl



developer to harvest OAI
content, save it to a local cache
(relational database), and dump
the data from the cache to an
indexer. Since traditional library
content also manifests itself as
MARC data, the module supports
the incorporation of this data into
the cache as well.

 SRU::Request and
SRU::Response facilitate the
implementation of an SRU
server. The Request module is
used to read the SRU operation
parameter and create an
associated Request object. Based
on the type of the Request object,
the SRU::Response module
initializes and builds Response
objects. The result of this build
process is an XML stream in
compliance with the SRU
schema.

 CQL-Parser provides the ability
to read CQL statements and
convert them into queries
supported by an underlying
indexer. The indexer used in this
implementation is swish-e. CQL-
Parser is essentially a port of
Mike Taylor and IndexData’s
cql-java package, and we are
appreciative of their support.

Links to source code and our
implementation are available at
http://alert.ockham.org/.

Discussion

The implementation more or less does
what it was designed to do.

For example, through a cron job the
content of the cache is successfully
updated and indexed on a daily basis.
Freetext, rudimentary Boolean, and
fielded queries are accurately supported
by the SRU client and server. Since
search results are returned to the client
as XML, it is easy to transform the
results into HTML, email messages, or
RSS news feeds.

The downside includes problems with
the indexer. Swish-e only supports 7-bit
characters and consequently non-ASCII
characters are indexed and displayed
poorly. Just as much of a problem is the
regular harvesting of the data. While
harvests are completed smoothly, new
items to an OAI repository were not
necessarily written recently. Instead,
new items in an OAI repository are
defined as items recently added. Things
written in 1996 are not necessarily new,
but they are returned in harvests because
they are new to the repository. This can
be confusing and frustrating to users.

Thus, we consider our implementation a
qualified success. It is light-weight,
standards-compliant, and non-
proprietary. Libraries or other content
providers could take the tools we have
created and apply them to their own
settings for their own purposes. A
different indexer could be used, and an
institution could make an effort to only
add truly new items to their repository.

Eric Lease Morgan
University Libraries of Notre Dame

June 14, 2005


